

RCA-2A3

POWER AMPLIFIER TRIODE

The 2A3 is a three-electrode, highvacuum type of power amplifier tube for use in the power-output stage of a-c operated receivers. The exceptionally large power-bandling ability

tionally large power-handling ability of the 2A3 is the result of its design features. Among these are its extremely high transconductance and its large effective cathode area.

CHARACTERISTICS

FILAMENT VOLTAGE (A. C. or D. C.)	2.5	Volts
FILAMENT CURRENT	2.5	Amperes
GRID-PLATE CAPACITANCE	16.5	μµf
GRID-FILAMENT CAPACITANCE	7.5	μμf
PLATE-FILAMENT CAPACITANCE	5.5	μµf
BULB		ST-16
Base	•••	Medium 4-Pin

As Single-Tube Class A1 Amplifier

Filament Voltage (A. C.)	2.5	Volts
PLATE VOLTAGE	250 max.	Volts
GRID VOLTAGE*	-45	Volts
PLATE CURRENT	60	Milliamperes
PLATE CORRENT	800	Ohms
	4.2	0
Amplification Factor	5250	Micromhos
TRANSCONDUCTANCE	2500	Ohms
LOAD RESISTANCE	-,	Ohms
Self-Bias Resistor	750	
UNDISTORTED POWER OUTPUT	3.5	Watts

As Push-Pull Class AB1 Amplifier (Two Tubes)

FILAMENT VOLTAGE (A. C.) PLATE VOLTAGE (Maximum) GRID VOLTAGE [*] SELF-BIAS RESISTOR ZERO-SIGNAL PLATE CURRENT (Per tube) EFFECTIVE LOAD RESISTANCE (Plate-to-plate TOTAL HARMONIC DISTORTION POWER OUTPUT	$\begin{array}{cccc} & 300 \\ & -62 \\ & -6$	2.5 300 780 40 5000 5 10	Volts Volts Ohms Milliamperes Ohms Per cent Watts
* Grid volts measured from mid-point of a-c operation			

INSTALLATION

The base pins of the 2A3 fit the standard four-contact socket which may be installed to hold the tube either in a vertical or in a horizontal position. For horizontal operation, the socket should be positioned with the filament-pin openings one vertically above the other. Sufficient ventilation should be provided to prevent overheating.

APPLICATION

As a power amplifier (Class A_1), the 2A3 is usable either singly or in pushpull combination in the power-output stage of a-c receivers. Recommended operating conditions are given under CHARACTERISTICS.

The values recommended for push-pull operation are different than the conventional ones usually given on the basis of characteristics for a single tube. The values shown for Push-Pull Class AB_1 operation cover operation with fixed bias and with self-bias, and have been determined on the basis of no grid current flow during the most positive swing of the input signal and of cancellation of second-harmonic distortion by virtue of the push-pull circuit. The self-bias resistor should preferably be shunted by a suitable filter network to minimize grid-bias variations produced by current surges in the self-bias resistor.

When 2A3's are operated in push-pull, it is desirable to provide means for adjusting independently the bias on each tube. This requirement is a result of the very high transconductance of these tubes—5250 micromhos. This very high value makes the 2A3 somewhat critical as to grid-bias voltage, since a very small bias-voltage change produces a very large change in plate current. It is obvious, therefore, that the difference in plate current between two tubes may be sufficient to unbalance the system seriously. To avoid this possibility, simple methods of independent self-bias adjustment may be used, such as (1) input transformer with two independent filament windings. With either of these methods, each tube can be biased separately so as to obtain circuit balance.

Any conventional type of input coupling may be used provided the resistance added to the grid circuit by this device is not too high. Transformers or impedances are recommended. When self-bias is used, the d-c resistance in the grid circuit should not exceed 0.5 megohm. With fixed bias, however, the d-c resistance should not exceed 50000 ohms.

	2A3	
page	sheet	date
1	51	1937
2	52	1937
3	FP	1999.02.28